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N Ref. 1, it is concluded that the flexural vibrations of a

slender straight beam stabilized by gravity gradient may be
_unstably coupled with rigid-body pitch motion if the ratio of
the flexural vibrational frequency to the orbital angular
velocity, w,/w,, is near unity.

This conclusion is incorrect in at least two respects. In the °

first place, the frequency of the lowest bending mode is
considerably higher than the orbiting angular velocity. In the
second place, w, /w, =1 is not the condition for instability.

A lower limit for flexural vibration frequencies can be
established as follows. In the limit, as the beam becomes more
slender, its equations of motion in the pitch direction ap-
proach that of a tensioned string. If the mass distribution is
uniform, then in the limit of slenderness the vibration
‘frequencies approach
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The rigid-body mode corresponds to n=1 and has the
frequency w,, =v3w,, as noted in Eq. (5) of Ref. 1. The lower
limit of the first flexural mode, corresponding to n=2, is
w, =3w.. Thus, the ratio w,/w, is at least equal to 3 for
uniform gravity gradient stabilized beams.

This is not to say that the general class of instability studied
in Ref. 1 (parametric resonance) cannot occur in the presence
of a gravitational potential. Study of the Mathieu-Hill
equation indicates small unstable regions near every integer
and half-integer value of the ratio of natural frequency to the
frequency of parametric excitation. Direct application of this
observation to Eq. (6) of Ref. 1 shows that the frequencies of
parametric excitation are the pitch frequency and twice the
pitch frequency. Thus, the centers of the unstable regions are
near the half-integer and integer harmonics of the pitch
frequency, and not near the orbital frequency as stated in Ref.
1.
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HE authors would like to acknowledge the interest that

Mr. MacNeal has shown in our recent Engineering Note. !
Mr. MacNeal’s comments are apparently based on the
following model of a tensioned string in orbit which he claims
to be a suitable model as the beam becomes more slender. The
string, of length 2/, is assumed to be rotating at a uniform
angular velocity of w, (orbital angular velocity). At any
section located at a distance £ from the center of the string,
the tension due to the combined centrifugal and gravity-
gradient effects is given by

T(§) = (3/2)w2(1? —£2) )
The free transvefse vibrations of a string with tension

varying along the length of the string may be described by the
following partial differential equation?2:

e Fwn)=33 @n @

where

y =transverse displaement of the string
p =mass per unit length of the string
t =time

After substitution of T'(£), given in Eq. (1), into Eq. (2), the
following partial differential equation is obtained:
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where
x=§£/1 -I=x=<l

With the customary assumed product solution,
y(x,t)=Z(x)f(t), one arrives at the following ordinary
differential equations: "

S+ (3/2)cwif=0 @)
(1-x2)Z" =2xZ’ +¢cZ=0 ®)
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