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Technical Comments.

Comment on "Dynamics of a
Flexible Body in Orbit"

Richard H. MacNeal*
The MacNeal-Schwendler Corp., Los Angeles, Calif.

IN Ref. 1, it is concluded that the flexural vibrations of a
slender straight beam stabilized by gravity gradient may be

unstably coupled with rigid-body pitch motion if the ratio of
the flexural vibrational frequency to the orbital angular
velocity, wn /wc , is near unity.

This conclusion is incorrect in at least two respects. In the
first place, the frequency of the lowest bending mode is
considerably higher than the orbiting angular velocity. In the
second place, <*n/uc«1 is not the condition for instability.

A lower limit for flexural vibration frequencies can be
established as follows. In the limit, as the beam becomes more
slender, its equations of motion in the pitch direction ap-
proach that of a tensioned string. If the mass distribution is
uniform, then in the limit of slenderness the vibration
frequencies approach

(1)

The rigid-body mode corresponds to n = l and has the
frequency un =V5wc, as noted in Eq. (5) of Ref. 1. The lower
limit of the first flexural mode, corresponding to « = 2, is
co/J=3o;c. Thus, the ratio cow/o>c is at least equal to 3 for
uniform gravity gradient stabilized beams.

This is not to say that the general class of instability studied
in Ref. 1 (parametric resonance) cannot occur in the presence
of a gravitational potential. Study of the Mathieu-Hill
equation indicates small unstable regions near every integer
and half-integer value of the ratio of natural frequency to the
frequency of parametric excitation. Direct application of this
observation to Eq. (6) of Ref. 1 shows that the frequencies of
parametric excitation are the pitch frequency and twice the
pitch frequency. Thus, the centers of the unstable regions are
near the half-integer and integer harmonics of the pitch
frequency, and not near the orbital frequency as stated in Ref.
1.
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Reply by Authors to R.H. MacNeal

V JCltumar* and Peter M: Bainum t
Howard University, Washington, D.C.

THE authors would like to acknowledge the interest that
Mr. MacNeal has shown in our recent Engineering Note.l

Mr. MacNeaPs comments are apparently based on the
following model of a tensioned string in orbit which he claims
to be a suitable model as the beam becomes more slender. The
string, of length 2/, is assumed to be rotating at a uniform
angular velocity of o>c (orbital angular velocity). At any
section located at a distance $ from the center of the string,
the tension due to the combined centrifugal and gravity-
gradient effects is given by

(1)

The free transverse vibrations of a string with tension
varying along the length of the string may be described by the
following partial differential equation 2 :

where

y =transversedisplaement of the string
p = mass per unit length of the string
t =time

After substitution of T(£) , given in Eq. (1), into Eq. (2), the
following partial differential equation is obtained:

(3)

where

With the customary assumed product solution,
y ( x , t ) = Z ( x ) f ( t ) 9 one arrives at the following ordinary
differential equations:

(4)

(5)(l-x2)Z" -2xZ' + cZ=0
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